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Abstract—Having facilities such as being in text form, having end-to-end connection establishment and being 

independent from type of transmitted data, SIP protocol is a good choice for signaling protocol in order to set up a 

connection between two users of an IP network. However, utilization of SIP protocol in a wide range of applications 

has made various vulnerabilities in this protocol, amongst which overload could make serious problems in SIP 

servers. An SIP is overloaded when it does not have sufficient resources (majorly CPU processing power and memory) 

to process all messages. In this paper, attempts were made to improve window-based overload control in RFC 6537. 

In window-based overload control method, a window is used to limit the number of messages that are sent to an 

overloaded SIP proxy simultaneously. In this paper, first, fuzzy logic was used to regulate accurate size of window and 

then it was developed, implemented and evaluated on an Asterisk open-source proxy. Implementation results showed 

that this method could practically maintain throughput under overload conditions, dynamically change the maximum 

window size, and also fairly treat among various upstream servers. 

Keywords- SIP; Overload control; Window based; Asterisk proxy; Fuzzy logic 

 

 
I. INTRODUCTION 

SIP protocol is the signaling protocol in 
application layer which is used to start, manage and 
finish the meeting between two or more applications. 
Major components of a SIP network are user agents, 
server proxies and registrars. User agent is the 
terminal component in SIP session. Figure 1 illustrates 
connection establishment between two user agents in a 
case in which middle proxies are statefully configured. 
Before establishing a session between callers (User 
Agents A in Figure 1) and callee (User Agents B in 
Figure 1), the information required for establishing a 
session through SIP signaling is exchanged. SIP 
signaling is performed by sending requests and 
responses via SIP proxy servers. The routes of 
requests and responses are independent from routes of 
the established sessions. Signaling of SIP takes place 
between the neighbors, as shown by 1, 2 and 3 in 

Figure 1. Resolving the SIP URI, each SIP proxy 
server performs routing of SIP requests and responses. 
The proxy task is to route and redeploy signaling 
between user agents. 

SIP server is an application one. The overload 
problem in SIP server is distinguished from ones in 
other HTTP servers for at least three reasons: first, the 
messages of SIP meeting pass several SIP proxy 
servers to reach the destination, which could itself 
make overload between two SIP proxy servers. 
Second, SIP has several retransmit timers which are 
used for dealing with packet loss, especially when the 
packet is sent via UDP transmission protocol, and this 
could lead to overload on SIP proxy server. Third, SIP 
requests are used as real time session signaling; so, 
they have high sensitivity. Overload in SIP-based 
networks occurs when the server does not have 
necessary sources (for instance, CPU processing 
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power and memory 1) for answering every received 
call. Reviews conducted in overloaded SIP proxy 
server have shown that increasing request rate results 
in sudden increase in delay in establishing connection 
and dropping proxy throughput and therefore increase 
in unsuccessful call rates. Therefore, the aim in 
overload control in SIP is to maintain the throughput 
of overloaded server near its capacity. Generally, there 
are two local and distributed methods for overload 
control. In local control, when SIP proxy server 
reaches its capacity threshold, it starts to reject 
requests; SIP estimates this threshold by calculating 
CPU consumption or queue length 2 . But, request 
rejection mechanism, in order to finish meeting, 
imposes cost itself and, when server is overloaded, it is 
compelled to allocate fraction of sources to reject 
requests, which in turn decreases efficiency in SIP 
proxy server.  In distributed method, upstream servers 
control load of downstream servers through rejecting 
requests and try to maintain it under their capacity.  

In 2011, design considerations for a SIP overload 
control mechanism were discussed in the SOC 
workgroup. The resulted design, named RFC 6537, 
was standardized in the workgroup [31]. Five ways of 
distributed overload control were described in this 
standard. These methods used explicit feedback 
between SIP proxy servers: 

 Rate-based overload control method 

 Loss-based overload control method 

 Window-based overload control method 

 Signal-based overload control method 

 On/Off overload control method 

This study focused on window-based overload 
control method. The main idea of this method is to 
limit the number of output messages by controlling the 
window size. In other words, in window-based 
overload control approaches, a limit is applied on the 
maximum requests waiting for response in the proxy. 
The main issue of such methods is window size. In 
this paper, fuzzy logic was proposed to determine 
window size as accurately and dynamically as possible 
and then it was implemented and evaluated on 
Asterisk open-source proxy. Simulation results 
showed that the proposed method reached a higher 
throughput than a traditional overload control 
algorithm proposed in [29]. 

The rest of this paper is organized as follows: 
section II includes an overview of the SIP protocol and 
existing overload control methods. Section III includes 
SIP overload problems. 

                                                           
1 In section IV we analyzed the effect of processing 
and memory resources on the operation of an 
overloaded SIP proxy. 
2 In order to understand the problem of overload in 
SIP servers more appropriately, in section III we 
implemented a simple local control mechanism and 
compared it with no-control case. 
 

 

Fig. 1.  Network configuration for SIP 

To continue the discussion of last section, in 
Section IV, effect of processing as well as memory 
resources on the operation of an overloaded SIP proxy 
is studied. The results lead to the fuzzy approach. In 
Section V, details of the proposed overload control 
algorithm which is developed in this open source 
software is presented. In Section VI, the network 
topologies and configurations are presented. Section 
VII contains performance evaluation and experimental 
results. Finally, Section VIII concludes the paper and 
outlines future works. 

II. BACKGROUND 

A. SIP Overview 

Figure 2 illustrates the typical SIP trapezoid 
topology and standard SIP voice call signaling 
consisting of the INVITE-BYE message sequence. 
When the caller (User Agent Client: UAC) sends an 
“INVITE” request to the callee (User Agent Server: 
UAS), which is routed through SIP proxies in the path 
between them, setting up of a session starts. Returning 
a “100 Trying” response to the previous hop in the 
path confirms reception of this request in each proxy. 
As the UAS receives the “INVITE” request, it sends 
back a “180 Ringing” response to the caller. It later 
also sends back a “200 OK” response when the 
application accepts the call in charge of taking the call. 
Finally, in order to acknowledge reception of “200 
OK”, an “ACK” request is sent to the callee. After this 
three way handshake, the media session is 
independently established between the two parties. 
The session is then terminated when one party sends a 
“BYE” request and another responds with a “200 
OK”. 

Upstream SIP Proxy Downstream SIP Proxy SIP User Agent SIP User Agent

INVITE 
INVITE 

INVITE 
100 Trying 

180 Ringing
180 Ringing

180 Ringing

200 OK
200 OK

200 OK

ACK
ACK

ACK

Media(end to end)

BYE
BYE

BYE

200 OK
200 OK

200 OK

 

Fig. 2.  Exchanged messages for establishing connection in SIP 
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B. SIP Proxy Server 

SIP servers are applications that accept SIP 
requests and respond to them. An SIP server should 
not be confused with a user agent server or the client-
server nature of the protocol, which is described in 
terms of clients (originators of requests) and servers 
(originators of responses to requests). An SIP server is 
a different type of entity; the types of SIP servers 
discussed in this section are logical entities. Actual 
SIP server implementations may contain a number of 
server types or may operate as a different type of 
server under different conditions. Because servers 
provide services and features to user agents, they must 
support both TCP and UDP for transport.  

An SIP proxy server receives a SIP request from a 
user agent or another proxy and acts on behalf of the 
user agent in forwarding or responding to the request. 

1) Introducing Asterisk Proxy 
Asterisk is the most popular open source VOIP 

telephone system in the world, based on which many 
available IPPBXs are currently produced. Asterisk is 
based on C programming language and could be 
loaded in various operating systems such as Linux 
NetBSD, UNIX, Solaris and Mac OSX. In addition, it 
is observed that some versions of Asterisk are 
installable and operable in Windows platform. 
Although Asterisk services could be operated using 
common computers and servers and through 
calculating power of system (CPU/RAM) on the basis 
of users multiplicity, popularity of Asterisk and 
diversity of its services have made producers utilize 
most of combined platforms of Linux and Asterisk in 
producing integrated connection equipment at various 
scales. The minimum system requirements for 
installing Asterisk are a 500 MHz Pentium computer 
with 512 MB RAM and 20 GB empty hard space [5]. 
This software uses UDP and TCP transmission 
protocols to receive and send SIP messages and, while 
receiving SIP messages, it first intercepts the message 
and then decides whether to reply to it or forward it to 
the next destination [5, 6]. In this paper, UDP 
transmission protocol was used to receive and send 
SIP messages. Asterisk uses several Worker Processes 
to receive and send SIP messages and every Worker 
Process receives messages individually and makes 
decisions about it. In order to process a SIP message, 
Worker Process should make a connection between 
the message and transaction; the message could be 
related to a transaction which already exists or it may 
be a new message for which a transaction is created; 
these transactions are saved in shared memory of 
Worker Processes. There is no guarantee that a 
Worker Process manages every message related to the 
same transaction and it is probable for one transaction 
to be managed by several Worker Processes. When a 
message is sent, a new timer is created and added to 
the list. A process manages this list, checks timers and, 
until the timer finishes and no replication is received 
for that message, resends the message by accessing the 
appropriate transaction [6]. 

C. SIP Client Workload Generator 

In this work, Spirent Abacus 5000 device was used 
to create traffic with different transmission rates and 

various distributions. This device is used for different 
tests including interoperability, performance, 
scalability and testing audio and video qualities on IP 
networks. This production is able to test efficiency and 
extensibility of the tested proxy by producing 
hundreds to thousands of calls. Asterisk software and 
Spirent Abacus 5000 tester device were used for 
implementing proxy servers and user agents, 
respectively. According to Figure 1, signaling load 
was produced by two UAS and UAC user agents, role 
of both of which was played by Spirent Abacus 5000 
device (see Figure 4). 

 

Fig. 3.  Spirent Abacus 5000 device 

 
 

 

Fig. 4.  Role of Spirent Abacus 5000 device 

D. Related Works 

Many researches about efficiency of SIP proxy 
server have been done. In [7], overload control 
methods were dealt with in SIP proxy server and 
OPNET software was used for measuring throughput. 
In [10] and [11], SIP was practically implemented 
along with TCP and UDP transmission protocol and 
OpenSER was used to obtain efficiency results. [12] 
and [13] mentioned window-based distributed method 
and combination of signal and window-based method, 
respectively. SIPstone [14] is a series of benchmark, in 
which various criteria are proposed for evaluating 
proxy server powers and redirecting server and 
registrar in answering SIP requests. In [15], another 
benchmark was presented for measuring effect of 
operating system, hardware configuration, database 
and selected transmission layer on SIP efficiency. In 
[16], practical experiments were accomplished on four 
types of proxy implementation which were different in 
both thread management and memory allocation 
methods. The results of these experiments showed that 
the effective parameters in proxy efficiency could be 
classified to two parts: parameters related to protocol 
such as message length, length variability and 
irregularity of excess load, and parameters related to 
type of server implementation; e.g. how to allocate 
sources of operating system to transactions. Also in 
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[17], similar studies on the effect of operating system 
and type of proxy implementation on SIP efficiency 
were done. In [18], efficiency of signaling SIP in 
establishing VOIP connections was examined using 
JAIN SIP API and by considering effect of call 
duration and call rate on the delay of connection 
establishment between two end-to-end user agents. In 
[19], effect of delay of user's answer on SIP server's 
efficiency was analyzed by introducing a tool called 
SIPperformer. In [20], issues such as importance of 
security cost in configuration which used 
authentication and also effect of stateful or stateless 
proxy and protocol type of transmission layer on 
proxy's efficiency were studied by placing only one 
proxy between the user agents. A group of studies has 
been also concentrated on the evaluation of SIP 
efficiency under various access technologies. For 
example in [21], effect of transmission delay and 
packet loss on W-CDMA link was surveyed using a 
proxy. In [22], the delay in signaling SIP in 
establishing IMS meetings was evaluated for different 
WiMax channels with different speeds. Also, 
compression techniques for SIP messages were used in 
order to reduce volume of SIP packets along with their 
transmission delay. Selection of transmission layer 
protocol is also influential in the efficiency of 
signaling SIP. In [23], various options in selection of 
transmission layer protocol were qualitatively 
surveyed for SIP. In [24], effect of deploying various 
transmission layer protocols, especially effect of 
window control mechanism in TCP on throughput and 
delay in connection establishment, was evaluated. In 
[25], it was shown that, despite the general perception 
in which more common utilization of UDP than TCP 
was considered on account of the low processing 
excess load in the former, it was probable that 
unfavorable efficiency in TCP utilization was due to 
implementation manner of proxy. A wide variety of 
local overload control methods differing mainly in the 
rejection policy and overload detection criteria has 
been introduced and evaluated in the literature. For 
instance, Queue-length-based algorithms were 
proposed in [7, 8, 26 and 27]. Occupancy-based 
algorithms, namely OCC, which used CPU utilization 
as a trigger for rejecting calls, were also proposed in 
[7, 26]. In addition, effect of priority-based queuing 
and transport protocol on performance of SIP 
signalling was analyzed in [28, 13], respectively. In 
[7], it was demonstrated that, for an overload of 100%, 
system throughput dropped by 25%, from 200 to 160 
cps. This throughput degradation could be considered 
the cost of running the overload control algorithm by 
CPU. This throughput penalty could be alleviated in 
many cases where cause of overload condition is 
upstream SIP servers. This circumstance is called 
“server-server” overload. Local rejection mechanisms 
are coupled with “distributed” OC, in which upstream 
servers control load of the downstream SIP server, 
keeping its load as close as possible to its capacity. 
Generally, the overloaded server monitors its 
resources and sends an explicit feedback to all 
upstream servers with the purpose of informing them 
from the overload. It also possibly communicates the 
amount of load that can accept. Accordingly, the 
upstream servers lower their forwarding rate. Shen et 
al. [29] proposed three window-based distributed OC 

methods in which downstream server dynamically 
estimated its capacity and generated a feedback, 
indicating the number of currently available window 
slots.  

While local overload control methods suffer from 
non-negligible rejection cost, most proposed 
distributed algorithms increase complexity of the 
overloaded server by requiring load monitor and 
calculating an explicit feedback. Another drawback of 
using explicit feedback is delay of the feedback in 
reaching upstream servers, which may result in 
instability or at least performance fluctuations of the 
algorithm. In the context of Internet congestion control 
algorithms, this is a well-known phenomenon [30]. 
Now, the main deficiencies of current overload control 
schemes could be summed up. First, reliance only on 
local rejection could lead to throughput degradation. 
Second, overload detection and possibly feedback 
generation cost CPU time and impact throughput if 
accomplished in the overloaded server. An overload 
condition is a complicated situation which may happen 
due to many reasons. It is believed that cost of 
generating feedback information is mainly because of 
local load estimation. 

III. SIP OVERLOAD PROBLEMS 

SIP uses its own reliability mechanism, which is 
using a large set of re-transmission timers, especially 
when used on an unreliable transport protocol such as 
UDP. For instance, Timer A is responsible for 
scheduling INVITE re-transmissions and starts with an 
initial value of typically T1 = 500 ms and doubles 
when being expired. After waiting for 64×T1 = 32 s, 
SIP will stop re-transmission and declare call failure. 
This mechanism is useful in the case of having 
unreliable links; but, in overload conditions, it is a 
major cause of performance degradation. During the 
overload, messages that arrive at the overloaded server 
either get dropped or incur large delay. Hence, the 
UACs (and also possibly the upstream proxies) start 
re-transmitting unacknowledged messages. 
Furthermore, incoming responses from the UAS, 
before being processed by the server, experience loss 
or extensive delay. This makes the server itself re-
transmit some parts of the requests it has already 
forwarded to the UAS. Therefore, the actual server 
load increases in a regenerative way so that the call 
fails. The curve labeled ‘‘without overload control’’ in 
Figure 5 shows the dramatic decrease in server 
throughput. Here, capacity of SIP server equals 700 
calls per second (cps). When load increases beyond 
this limit, the server becomes overloaded and 
congestion collapse occurs. A similar behaviour was 
reported in [7, 8] and many other references. Also, SIP 
server performance on a real test-bed was evaluated 
and similar results were obtained, as explained in the 
following sections. 

In order to survey efficiency of SIP proxy when 
facing overload, the simplest traditional topologies 
were used [9, 7]. In this topology, platform of which is 
illustrated in Figure 8, a central proxy inquires every 
connection to be made between parties. This model is 
usually used for studying destructive effects of 
overload on proxy. If the number of users that start to 
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call in a short duration of time exceeds proxy's 
capacity, it is faced with overload. The overload with 
which the proxy in this topology is faced is in the form 
of client-server and the methods that are presented to 
get away from it are local inevitable. 

Conversation production rate starts from the 
amount of as low as 100 calls per second and goes up 
to as high as 1200 calls per second, having Poisson 
distribution. In this case, only one proxy considers call 
routing. 

Figure 6 shows average call establishment time 
versus call request rate; call establishment time is 
defined as the interval between sending the first 
“INVITE” from meeting starter to time of receiving 
OK message. As can be seen in this figure, the average 
call establishment time before received call rate 
reaching about 700 calls per second was 
inconsiderable and lower than ten ms. So, capacity of 
the proxy was 700 calls per second. As the received 
call rate approached to proxy's capacity (700 cps), the 
average delay went beyond 10 s. 

The reason why call process procedure gets slow 
in proxy is that the amount of received call rate is 
beyond the processing capacity of the proxy and 
therefore proxy's sources are conjugated for analyzing 
and dissecting new call requests. Besides, the flow of 
requests of new calls eventuates to overflowing of 
received queue and losing the packets related to 
ongoing calls. As a result, users whose requests have 
remained unanswered or the progression of whose call 
establishment has remained incomplete proceed to 
resend their messages. On the other hand, the proxy 
itself spends a part of its capacity on resending 
requests which have been already sent because it has 
not seen some of the received reply packets which are 
missed through overflowing of queue or have not been 
checked yet because the proxy is busy. This procedure 
continues until proxy's throughput falls to near zero. 
The diagram of proxy's throughput in terms of call 
request rate which is shown in Figure 5 clearly proves 
this issue. For example, for rates of higher than 800 
cps, the magnitude of throughput is practically 
negligible. Note that, this diagram shows rate of calls 
that have started successfully in unit of time. 

Figure 7 shows retransmission rate for “INVITE” 
requests made on the user side. As expected, no 
request is resent before the received call rate reaches 
proxy's capacity. But, upon reaching the received call 
rate to proxy's capacity, retransmission rate abruptly 
increases and considerably intensifies the load 
imposed to proxy. 

The amount of imposed load is calculated as the 
ratio of processing cost of each call to its expected 
processing cost in the case of non-overload. The cost 
of each call, which includes the required time for 
dissection of its related packets, regulating timers and 
creating and eradicating state for its related 
transactions, increases as load rate increases because, 
in the case of overload, as a result of resending 
phenomena, the number of packets which is created 
and dissected per call along with the number of timers 
that are regulated and reset increases. 

 

Fig. 5.  Proxy’s throughput in the case of single proxy 

 

 

 

Fig. 6.  Delay of call establishment in the case of single proxy 

 

 

 

Fig. 7.  INVITE retransmission rate in the case of single proxy 

 

 

Spirent Abacus 5000

Asterisk SIP proxy server

Intel Dual Core
1.8GHz

2GB RAM
CentOS 6.3

SIP Proxy

UAC(s) UAS(s)

IP-PBX LAN

 

Fig. 8.  Single-proxy topology and testbed setup 
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Although the number of packets that are received 
and dissected is related to size of queue as well, if the 
size of queue is small, many packets are missed and 
there is no need for them to be processed in proxy. 
Therefore, as cost of each call increases, the amount of 
load which should be processed each proxy is much 
more than the load rate that is imposed directly by 
excess calls. The reason of sudden fall in proxy's 
throughput in load rates of a little more than 700 cps is 
this amount, too. For example, if the cost in non-
overload case for each call is 5 ms, in the case of 
overload, it may increase to 6 ms. So, imposed load to 
proxy is like being 1.2 times of the rate of its received 
calls. 

The major aim of SIP overload control (OC) is to 
keep server throughput as close as possible to its 
capacity in the presence of overload. As can be seen in 
the above figures, the curve labeled ‘‘Theoretical’’ 
shows how an ideal OC scheme would work when 
server throughput is 700 cps. As was mentioned 
before, there are two ways to control overload: local 
and distributed. In the former, the control loop is 
internally implemented on the overloaded server; 
therefore, a SIP server starts rejecting additional 
requests whenever it gets close to its capacity limit. 
This is accomplished by sending a “503 Service 
Unavailable” message in response to an “INVITE” 
[4]. Under heavy overload conditions, the overloaded 
server will spend most of its resources on rejecting 
extra requests, which leads to throughput degradation. 
This can be clearly observed in the curve labeled 
‘‘Local Overload control’’ in Figure 5. The local 
overload mechanism in this paper will be shown 
below. 

A queuing structure of the SIP server could be seen 
in Figure 9. As shown in this figure, the queue is a 
simple single queue. Every time a SIP message is 
arrived, it is placed in the queue and served with the 
first in first out (FIFO) procedure.  Here, two different 
states may occur for the server: overload and 
underload. In order to detect an overload, two 
thresholds can be introduced: THLow and THHigh. If the 
occupied number of buffers in the queue exceeds the 
threshold THHigh, the SIP proxy server recognizes a 
congestion condition. After that, if the occupied 
number of buffers becomes less than THLow, the SIP 
proxy server recognizes that the congestion is 
removed. Whenever a packet arrives at the queue, 
first, average queue length of the overloaded server 
(Qavg) is calculated by function (1) and then the 
rejection probability of service, Prej, is calculated by 
function (2) such that the proxy will randomly reject 
messages when length of the occupied buffering queue 
reaches a certain threshold. When a message arrives at 
the proxy, it compares current Qavg with the 
aforementioned thresholds: if Qavg < THLow, the 
proxy accepts the message; if Qavg > THHigh, it 
rejects the message; if THLow < Qavg < THHigh, 
then Prej calculated by function (2) will determine 
whether to refuse the message and response by a 503 
message. 

Qavg (n) = (1-Wq) Qavg (n-1) + Wq Q (n)              (1) 

Prej = ((Qavg – THLow) / (THHigh – THLow))           (2) 

UAS(S)
Forward

Message

SIP Server

UAC(s)
Request 

Message

 Messages Queue

123...n

Reject request

(503)

THLow

THHigh

 

Fig. 9.  Queuing structure and thresholds 

 

where Wq is the queue weight. This allows for 
tuning contribution of the current queue size (Q (n)). 
The maximum and minimum thresholds for buffer 
length are set as THLow = 400, THHigh = 1000 
messages. The average queue weight Wq is 0.1. 

Figure 10 shows a message flow for load 
regulation purpose. Usually, a SIP proxy server returns 
the“100 Trying” response for “INVITEs”. As shown 
in the figure, the SIP proxy server returns “503” when 
congestion conditions occur. As mentioned before, 
according to RFC3261, when source SIP UA receives 
“300-699” response, it must stay in the state of starting 
Timer, which is called “A” here. In this state, the 
source SIP UA cannot send any new “INVITE” 
messages. The period which stays in this state is 
controlled using Timer A. As was said, the default 
value of Timer A is chosen as 32 s. Through 
regulating setting up new calls by Timer A, the offered 
load to the network can be reduced. It is expected then 
that the overload is temporarily removed. And, this is 
the main reason of relative and temporary success of 
local OC methods. 

SIP Proxy SIP Proxy SIP UA

INVITE 
INVITE 

100 Trying 

503 service unavailable

ACK
ACK

503 service unavailable

Timer A

Transaction is terminated
 

Fig. 10.  Message flow for load regulation 

IV. PROCESSING AND MEMORY RESOURCES OF A PROXY 

As can be seen in Figure 11, proxy's queue is 
approximately empty before occurring overload since 
every message is drawn out of queue and processed 
upon reaching the proxy. Although, in overload 
conditions, many packets are consistently waiting in 
the queue to receive service, applying local overload 
control method could decrease memory usage. The 
diagram in Figure 12 shows CPU usage in proxy in 
terms of call request rate. In this diagram, the 
horizontal axis represents the amount of load received 
by proxy and vertical axis represents the average CPU 
utilization. These amounts are achieved by regular 
sampling (every second) of CPU engagement times 
and their averages. As was expected, in load rates 
lower than proxy's capacity, percentage of CPU 
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utilization is proportional to the amount of load to 
proxy's capacity. For example, when there is no 
overload control mechanism, in about 350 cps which 
is half of the proxy's capacity, utilization of proxy's 
CPU is approximately 0.5 as well; also, in a rate of 
630 cps in which call establishment request rate is 
90% of proxy's capacity (700 cps), utilization of 
proxy's CPU is 0.9. In loads greater than proxy's 
capacity which lead to overload, CPU utilization 
reaches 100%. Using local overload control 
mechanism, CPU utilization could be decreased. 

In Figure 13, the processing resource used in proxy 
in “without overload control” case is illustrated. It 
could be seen in the figure that, as the rate increases, 
percentage of CPU utilization by Asterisk and MySQL 
which are responsible for processing SIP packets and 
managing users' database, respectively, increases as 
well. This procedure continues until the rate of about 
700 cps, in which CPU efficiency reaches 100 percent. 
After that, as load increases, no additional processing 
resources are devoted to either of the procedures. 
Therefore, in rates of higher than this, call 
establishment delay increases dramatically. 

 

Fig. 11.  Average queue packet count in the presence and absence 
of local overload control mechanism 

 

 

Fig. 12.  Average CPU utilization in the presence and absence of 

local overload control mechanism 
 

 

Fig. 13.  Utilization percentage of proxy's CPU in case of not 

using any overload control method 

Then, we study effect of limitation of memory and 
processor on efficiency of another proxy called 
OpenSER (With the same details). In these tests, 512 
MB of memory is allocated to OpenSER and then the 
used memory has been monitored during test. The 
number of the sent, received and deleted messages 
from SIP buffer has been monitored.  

In Figure 15, maximum rate of shared memory has 
been shown which an ascending function of call rate is 
naturally.  

In dotted curve which is the authentication and 
stateful proxy, the use of memory has reached its 
highest limit in rate 700 cps. In this state, server 
parsing many demands for which it creates transaction 
but call setup time is very long due to shortage of 
processing sources and many of these contacts will 
fail. With increasing call establish rate, major part of 
messages is either “INVITE” or resending it. As a 
result, proxy is more involved in analysis of calls and 
operations relating to authentication and 
communication with database. Therefore, fewer 
messages are sent to transaction allocation and 
submission phase which results in reduction of the 
memory used by proxy. 

In the stateful curve without authentication, proxy 
memory reaches saturation limit in rates of higher than 
700 cps. In this case, the number of active transaction 
considerably increases (exceeding 10000) and because 
server has no enough memory for new contacts, it 
prevents new users from persisting on contact requests 
with error 500 which means internal error of server.  
When proxy memory is filled, the number of missing 
packets is also enhanced.  

In this paper, we seek to prevent location of the 
proxy in this situation. 

 

Fig. 14.  Average CPU utilization (OpenSER SIP Proxy) 

 

 

Fig. 15.  Maximum memory usage (OpenSER SIP Proxy) 
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The recent figures show that proxy's efficiency 
changes due to two factors: the allotted memory and 
processing power of the processor on which the proxy 
runs. Both processor saturation and memory 
deficiency degrade proxy's efficiency dramatically. 
Note that, it is feasible to prevent proxy from 
accepting calls which are more than its capacity by 
limiting its allotted memory. Under these 
circumstances, proxy's processor never reaches the 
saturation limit and also, through sending a 500 
message by the proxy, additional calls are not made. 
However, it is notable that this policy improves 
proxy's efficiency to some limited extent. In other 
words, as call rate increases, proxy's processor which 
is needful of parsing received messages in order to 
know their contents reaches saturation again. But, this 
happens under heavier loads. 

V. WINDOW-BASED FUZZY OVERLOAD CONTROL 

MECHANISM 

The main issue of window-based algorithms is the 
window length which is regulated by downstream 
proxy's feedback. It is feasible to prevent overload by 
limiting window length. Therefore, new calls are 
accepted only when there is an empty slot in the 
window. As mentioned before, it is feasible to 
efficiently limit the number of messages by using 
window size. 

In this section, an effective fuzzy-based method is 
introduced for window-based overload control. In this 
method, fuzzy logic was used to solve the problems 
related to changes of window size. Fuzzy logic bore 
characteristics that made it appropriate equipment for 
solving such problems. In fuzzy logic, unsure data 
were received and processed although a sure and finite 
output was generated. Instead of request and response 
messages, this logic was used to determine overload 
window size accurately and dynamically. Considering 
the results achieved from analyzing SIP proxy's 
processing and memory resources in IV section, in 
order to initially diagnose occurrence of overload and 
then change the window size, instead of using request 
and response messages and comparing them, CPU and 
memory utilization of the overloaded proxy were used 
to prevent overload and react on time in the case of 
overload happening. 

In this method, a fuzzy controller was contrived to 
dynamically change window size in upstream server. 
The input of this controller was average utilization of 
CPU and memory in downstream server (Icpu and Imem, 
respectively) and its output was rate of changes of 
window size in upstream server (ΔW) (see Figure 17). 

Upstream Asterisk Proxy

Downstream Asterisk Proxy

                 10 Mbps Ethernet IP-PBX LAN

Intel Dual Core
3.0GHz
4GB RAM
CentOS 6.3

Intel Dual Core
1.8GHz
2GB RAM
CentOS 6.3
Capacity:700cpsIcpu

Imem

 

Fig. 16.  General scheme 

 

 SIP server 

overload 

controller

Based on 

Fuzzy logic 

ΔW

Icpu

Imem

 

Fig. 17.  Fuzzy controller 

In this method, the window size control 
mechanism in upstream proxy was as follows: 

1) Wmax = Winit 

2) Calculating ΔW by fuzzy controller 

3) Wmax(t+1)=Wmax(t) + (ΔW * Wmax(t)) 

On the basis of the results of performed 
experiments, the best range of changes for ΔW was       
[-0.6, 0.4], the membership function of which is stated 
below. 

A. Fuzzy Derivation System 

Fuzzy derivation is a method which interprets 
values of input vector and assigns a value to output 
vector using defined rules. In this paper, Mamdani 
approach was used as the fuzzy derivation method. 

B. Input and Output Membership Functions 

The proposed fuzzy system in the algorithm 
included two input and one output variables. 
Membership functions were determined using 
experimental experiences and trial-and-error 
procedure. The improvement of system efficiency 
dramatically depended on membership functions 
determined in this phase. Membership functions for 
input and output variables are as shown in the 
following figures. 

 

Fig. 18.  Membership function of input variable Icpu 

 

 

 

Fig. 19.  Membership function of input variable Imem 
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Fig. 20.  Membership function of output variable 

 

C. Fuzzy Rules Base 

The next step of designing fuzzy systems is to 
design fuzzy rules base. Fuzzy rules base is like the 
core of fuzzy derivation engine. This base is a set of 
If-Then rules, each responsible for a part of derivation 
and decision making process. Note that, if rules base is 
extensive, then fuzzy system is complicated and its 
speed is degraded. The rules based used in the 
proposed algorithm is presented as follows. 

1. If (CPU-Usage is Low) and (Memory-Usage is Low) 
 Then (Delta-Windows-size is INC)   

2. If (CPU-Usage is High) and (Memory-Usage is High) 

 Then (Delta-Windows-size is FastDEC) 
3. If (CPU-Usage is Medium) and (Memory-Usage is Medium) 

Then (Delta-Windows-size is NoCHange) 

4.  If (CPU-Usage is Low) and (Memory-Usage is Medium) 
Then (Delta-Windows-size is SlowINC)  

5. If (CPU-Usage is Low) and (Memory-Usage is High) 

Then (Delta-Windows-size is SlowDEC)  
6. If (CPU-Usage is Medium) and (Memory-Usage is Low) 

Then (Delta-Windows-size is SlowINC)  

7.  If (CPU-Usage is Medium) and (Memory-Usage is High) 
Then (Delta-Windows-size is DEC)  

8. If (CPU-Usage is High) and (Memory-Usage is Low) 

Then (Delta-Windows-size is SlowDEC)  
9.  If (CPU-Usage is High) and (Memory-Usage is Medium) 

Then (Delta-Windows-size is DEC) 

TABLE I.  FUZZY RULES BASE 

Icpu/Imem Low Medium High 

Low INC SlowINC SlowDEC 

Medium SlowINC NoCHange DEC 

High SlowDEC DEC FastDEC 
 
 

In order to evaluate rules, first of all, inputs are 
made fuzzy and then applied to the rules' premier 
section. In this system, AND fuzzy operator was used 
to derive a number representing the assessment of the 
rules' premier section. Then, the derived number was 
applied to the inferior section. Also, union operator 
was used to merge the results of applying fuzzy rules. 
Consequently, a central average de-fuzzier operator 
was used to derive a real output. 

For example, as shown in Figure 21, for input 
values Icpu=0.5 and Imem=0.5, the proposed fuzzy 
system considered ΔW as -0.218, which represented 
that window size should decrease as -0.218*Wmax.  

Figure 22 shows output variation versus inputs as a 
three-dimensional diagram. It is clear that as Memory 
and CPU in downstream server were more involved, 
window size in upstream server decreased. 

 

Fig. 21.  Fuzzy system output for [0.5, 0.5] 

 

Fig. 22.  Three-dimensional diagram of system's output versus 
both of its inputs 

 

VI. NETWORK TOPOLOGIES , 
CONFIGURATIONS AND PRACTICAL 

CONSIDERATIONS 

The SIP trapezoid, shown in Figure 23, was used 
as the basic network topology. In this topology, two 
proxies, namely, upstream and downstream, were used 
for handling outgoing and incoming calls, 
respectively. In order to easily study OC performance, 
the upstream proxy was made faster than the 
downstream. All the calls were originated from the 
clients of the upstream proxy and destined to those of 
the downstream proxy. 

In this topology, it is assumed that M transmitter or 
upstream proxies (e.g. M=1) make an overload in a 
destination (downstream) proxy by sending many call-
making requests. The overload with which the proxy 
in this topology is faced is in the form of server-server. 
In this form of overload, a limited number of upstream 
proxies send a huge volume of traffic to a downstream 
proxy and leads it to be faced with overload. This 
topology is applicable wherever any user gets service 
from their local service provider proxy. The capacities 
of upstream proxies are considered so that they do not 
face overload during experiments. By the way, for 
simplicity, only one upstream proxy is used.  

Figure 24 shows the present test bed setup, which 
was composed of two Linux PCs connected over a 
100Base-T Ethernet LAN. The faster PC functioned as 
the upstream proxy while the slower one was 
considered the downstream proxy with nominal 
capacity of approximately 700 cps. Upstream and 
downstream servers were configured in the 
transaction-stateful mode without any authentication. 
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Asterisk software and Spirent Abacus 5000 tester 
device were used for implementing proxy servers and 
user agents, respectively. The upstream server was a 
PC with INTEL Dual Core 3 GHZ processor and 4 GB 
memory and the downstream server was a PC with 
INTEL 1.8 GHz processor and 2 GB memory. Both 
servers used version 6.3 of Linux CentOS as their 
operating system. By modifying Asterisk code, the 
proposed mechanism on the upstream server was 
implemented. However, the downstream proxy was 
intact. Also, using MATLAB, the proposed fuzzy 
system was simulated. 

Domain 1Domain 0

Upstream 

Proxy

Downstream 

Proxy

UAC(s)
UAS(s)

 

Fig. 23.  Dual-proxy topology (trapezoid) 

Asterisk SIP Proxy Server

(downstream)

Asterisk SIP Proxy Server

(upstream)

IP-PBX LAN

Spirent Abacus 5000 

Call Generator

Test Dispatch 

Terminal

Intel Dual Core
1.8GHz
2GB RAM
CentOS 6.3
192.168.10.11
Capacity:700cps

Intel Dual Core
3.0GHz
4GB RAM
CentOS 6.3
192.168.10.10

100 Mbps Ethernet IP-PBX LAN

 

Fig. 24.  Test bed setup for the trapezoid topology 

UAS(s)

Domain 1

Domain 0

Domain 2

Upstream Proxy 0

Upstream Proxy 1

Downstream

Proxy

Caller 

Group 0

Caller 

Group 1

 

Fig. 25.  Edge-core topology 

The next network topology (Edge-Core) is 
depicted in Figure 25. This topology consists of a 
number of edge servers that communicate signaling 
messages through one core server, which was 
overloaded in the present experiments. This is a 
representative of the topology used in the IP 
Multimedia Subsystem proposed by 3GPP. In the 
current experiments, there were two upstream servers 
and a downstream one. All the edge servers were 
assumed and configured to be fast enough so that they 
were not overloaded. Using the Edge-Core topology, it 
was shown how the proposed overload control scheme 
could be extended to the multiple upstream cases 
while parameters such as fairness as well as 
throughput were considered. 

VII. EVALUATION OF EFFICIENCY 

In this section, efficiency of overload control 
algorithm is reviewed and compared with local 
overload control. Reports produced by Spirent Abacus 
5000 device were used to check time and type of sent 
and received messages by users. Also, reports of 
Asterisk software were used to measure status of 
progression of calls and transactions that occurred in 
proxy; and also Oprofile software was used to measure 
processing load of proxy. There are various criteria to 
determine efficiency of SIP [33], amongst which, in 
this study, the delay of connection establishment 
(interval between sending “INVITE” from UAC to 
receiving OK from proxy), retransmission rate and 
proxy throughput (number of successful calls per unit 
of time) were concentrated on. Conversation 
production rate starts from low amount and continues 
to heavy rates of about 1600 cps. 

A. Result for Trapezoid Topology 

1) Throughput 

Figure 26 shows throughput as a function of rate of 
received call requests in the case of existence and non-
existence of overload control method, which 
represents that proxy's throughput could be maintained 
at its around maximum capacity in case of existence of 
overload control mechanism. As is shown in Figure 
26, using fuzzy overload control mechanism, the 
upstream proxy was able to maintain its throughput up 
to about 1500 cps, which was about twice the capacity 
of downstream proxy, whereas, if overload control 
algorithm was not used, upstream proxy's throughput 
would be approximately equal to the one related to 
downstream proxy (700 cps). Also, this figure showed 
throughput when perfect overload control was done 
(curved labeled “Theoretical”), which kept throughput 
at the maximum downstream server capacity of 700 
cps. Under overload conditions, throughput of the 
proposed mechanism converged to 645 cps and was 
almost independent from the load. On the other hand, 
throughput of the local OC approach was lower than 
that of the proposed mechanism and furthermore 
decreased with the load increase. The curve labeled 
“WIN-DISC” is an explicit feedback window-based 
approach proposed in [29] by Shen et Al., in which the 
downstream server calculated and sent back a window 
size at the end of each discrete control interval of Tc = 
200 ms determining the number of new sessions it can 
accept for the next control interval (in experiments, 
parameter values were used that yielded maximum 
throughput, i.e., DB = 200 ms and Tm = 100 ms, 
exactly as reported in [29]). Throughput of the 
proposed mechanism was constantly higher than that 
of WIN-DISC. The poor throughput of WIN-DISC 
might be attributed to the explicit nature of the used 
feedback, which is known to result in throughput 
degradation and stability problems as the feedback 
loop delay increases.Using OCC, CPU utilization 
rapidly fluctuated and became more severe as overload 
deteriorated. This was due to the regenerative nature 
of overload where calls progressively took much more 
CPU time due to retransmissions. However, once 
enough calls were rejected, the CPU utilization 
dropped. 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

4-
10

 ]
 

                            10 / 13

https://journal.itrc.ac.ir/article-1-113-en.html


                    

Fig. 26.  Performance comparison of the proposed mechanism 

with that of WIN-DISC and no control 
 

 

Fig. 27.  Average delay comparison of the proposed mechanism 

with that of WIN-DISC and no control 

 

 

Fig. 28.  Retransmission rate  comparison of the propsoed 

mechanism with that of WIN-DISC and no control 

2) Average Delay of Call Establishment 

It was seen that, as new requests were received, 
window size started to increase and therefore delay 
increased, too. As shown in Figure 27, this linearly 
increased the average time of call establishment in this 
proxy to about 1500 cps with growth rate far much 
lower than the case in which the overload control 
mechanism was not used. 

3) Retransmission Rate 

In rates higher than downstream server's capacity 
(700 cps), the huge amount of received requests 
stimulated CPU sensor and therefore many calls were 
rejected. Sudden rejection of calls led many “Ack” 
packets to reach proxy in a very short interval and 
therefore fill the queue of proxy so that there was no 
place in this queue for the packets of answers related 
to ongoing calls. Missing of answer packets was a 

stimulation to activate retransmission mechanisms in 
both server and client which deteriorated the situation. 
So, calls accepted in proxy in this status were accepted 
with a very long delay. The diagram shown in Figure 
28 individually illustrates retransmission rate for 
“INVITE” and “BYE” requests from the user side. As 
expected, when fuzzy overload control mechanism 
was used in upstream server, resending rates of 
messages considerably decreased. Overload led to loss 
of “OK” packets related to the passed calls. Thus, the 
proxy was required to resend “INVITE” requests 
related to lost packets. In this case, increase of 
resending rate made proxy spend much of its time on 
resending requests related to ongoing calls and 
therefore throughput rate of proxy considerably fell. 
Processing the abundant packets which existed in 
proxy's queue caused more delay in the passes calls 
and increased resending rate on caller's side. Note that, 
if the capacity of proxy's queue was high enough, 
additional requests were rejected before being expired 
and resent from user's side; on the other hand, not 
losing “OK” packets related to the passed calls in this 
case led to decrease in average time of successful call 
establishment and therefore there was no need for 
proxy to resend “INVITE” messages; so, throughput 
would have less decrease. 

4) Window Size Variations 

In this scenario, Spirent Abacus 5000 generates 
load traffic with rate 800 cps for 100 s. The upstream 
server transfers this traffic to the downstream server 
while the latter operates at its maximum capacity. In 
traditional mechanisms, as new requests are received, 
window size as well as delay starts to increase. This 
continues until delay exceeds a threshold value. At this 
time, window size reduces to its half. However, in 
fuzzy method, the average window size changes 
majorly about maximum window size. As shown in 
Figure 29, this issue leads to retention of throughput at 
the capacity of downstream proxy and rejection of 
other incoming requests.  

 

Fig. 29.  Windows variations, throughput and rejection rate with 

rate of 800 cps 

B. Result for Edge-Core Topology 

In this section, the Edge-Core topology was used, 
as illustrated in Figure 25, to study performance of the 
proposed overload control algorithm when used by 
multiple upstream proxies. In the implementation 
scenario, two upstream edge proxies were considered, 
each forwarding calls from a group of UAs to a single 
core proxy causing it to overload. Also, fairness of the 
proposed overload control algorithm was investigated 
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through monitoring the throughput perceived by each 
upstream edge proxy during the overload. 

1) Fairness Analysis 
In order to provide fairness during the overload, 

capacity of the overloaded downstream proxy was 
required to be equally split between all upstream 
(edge) proxies which communicated with it. Note that, 
with the proposed mechanism, the downstream server 
did not need to know about the number of upstream 
servers connected to it and also did not generate any 
extra feedback.  

The proposed mechanism did not require changes 
in the SIP protocol since it was implemented in the 
sending (upstream) servers; consequently, it did not 
impose processing burden on overloaded servers. 

Indeed, Figure 30 verifies this claim. In this figure, 
caller groups generate call requests of rate 650 cps, 
each starting 100 s after the previous group. Network 
latency is set at zero. It could be seen clearly in the 
figure that all upstream servers get roughly the same 
throughput which obviously decreases as more caller 
groups start sending requests. Note that, the total 
throughput of the core proxy is maxed out at its 
capacity (i.e., 700 cps). From 0 to 100 s, only one 
upstream proxy was sent at 650 cps so it got the entire 
capacity. From 100 to 200 s, there were two operating 
proxies, each receiving roughly equal throughput of 
360 cps and 340 cps. At 200 s, the second proxy 
stopped sending requests and another one regained the 
extra capacity. 

 

Fig. 30.  Fairness analysis of the proposed method 

VIII.  CONCLUSION 

The studies accomplished in this paper showed that 
SIP protocol was not efficient enough in facing 
congestion so that, when call request rate increased, 
delay of call establishment increased suddenly, proxy's 
throughput fell and consequently retransmission rates 
and unsuccessful calls increased. In this paper, fuzzy 
window-based control method was developed, 
implemented and tested on a real platform. Also, the 
efficiency of SIP proxy in case of overload was 
studied using a distributed overload control method, 
which was developed on Asterisk open source proxy. 
The proposed overload control algorithm for SIP 
servers was a window-based approach that required no 
extra feedback and used fuzzy logic to detect the 
overload. Moreover, the suggested method could 
change the maximum window size dynamically. 
Studying the charts of throughput, delay and 
retransmission rate of “INVITE” and “BYE” messages 

demonstrated that the proposed algorithm was able to 
maintain the throughput at a high level and be fair. As 
future works, we intend to investigate more 
sophisticated window update strategies. In addition, an 
analytical model as well as stability analysis of the SIP 
network is also underway. 
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